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Abstract

Unused definitions are values assigned to variables but not
used. Since unused definitions are usually considered re-
dundant code causing no severe consequences except for
wasting CPU cycles, system developers usually treat them
as mild warnings and simply remove them. In this paper,
we reevaluate the effect of unused definitions and discover
that some unused definitions could indicate non-trivial bugs
like security issues or data corruption, which calls for more
attention from developers.
Although there are existing techniques to detect unused

definitions, it is still challenging to detect critical bugs from
unused definitions because only a small proportion of un-
used definitions are real bugs. In this paper, we present a
static analysis framework ValueCheck to address the chal-
lenges of detecting bugs from unused definitions. First, we
make a unique observation that the unused definitions on
the boundary of developers’ interactions are prone to be
bugs. Second, we summarize syntactic and semantic pat-
terns where unused definitions are intentionally written,
which should not be considered bugs. Third, to distill bugs
from unused definitions, we adopt the code familiarity met-
rics from the software engineering field to rank the detected
bugs, which enables developers to prioritize their focus.
We evaluate ValueCheck with large system software

and libraries including Linux, MySQL, OpenSSL, and NFS-
ganesha. ValueCheck helps detect 210 unknown bugs from
these applications. 154 bugs are confirmed by developers.
Compared to state-of-the-art tools, ValueCheck demon-
strates to effectively detect bugs with low false positives.
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1 Introduction

Unused definitions have been long regarded as redundant
code in C/C++ programs. To be specific, a definition of vari-
able v in programs refers to an occurrence of v on the left-
hand side of an assignment statement, and a use indicates
an occurrence of v on the right-hand side. If a variable is
assigned with a value but the value is not used, that is an
unused definition. Since unused definitions do not directly
cause severe consequences, they are mostly regarded as bad
code practices that do not require much attention. However,
unused definitions could indicate deeper problems. When
developers write an assignment, intuitively they should use
that value from the assignment somewhere afterward. When
the value assigned is not used, it violates this intuition, thus
reflecting the inconsistency of developers’ behavior [11, 27].
Unused definitions could reveal underlying critical bugs.

Figure 1 gives two real-world examples from a widely-used
open-source software, NFS-ganesha [5]. In the first example
from Figure 1a, attr is assigned with the return value of
next_attr_from_bitmap. However, this definition is soon
overwritten and not used. This skips the first attribute of
the source bitmap list without copying it to the destination
bitmap list, causing a severe problem — important file at-
tributes such as ownership are not copied properly to the
destination bitmap, which is a security issue that can further
invoke privilege escalation. Another example in Figure 1b
shows a bug where the function argument bufsz in function
logfile_mod_open is unused and overwritten, which is an
implicit unused definition. The unused definition serves as a
symptom indicating the code possibly contains a problem
— In this example, bufsz originates from the configuration
value ‘logging buffer size’. If developers set the logging buffer
size to zero, they would expect logs to be output immediately.
However, since the value is subsequently overwritten with
1400 within the function, the configuration has no effect.

https://doi.org/10.1145/3627703.3629576
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The actual access log buffer size is set to 1400 regardless of
how the developer set it, resulting in unexpected memory
consumption and wrong buffering behaviors.

int bitmap4_to_attrmask_t(bitmap4 *bm, attrmask_t
*mask)
{
  int attr = next_attr_from_bitmap(bm); [Author1]
  ...
  for (attr = next_attr_from_bitmap(bm) [Author2];
       attr != -1; attr = next_attr_from_bitmap(bm)) 
  {...}
}

This definition is unused

(a) A Severe Bug Underlying Unused Definitions. Function
bitmap4_to_attrmask_t() converts NFSv4 attributes mask to
the FSAL attribute mask. However, the first attribute returned by
next_attr_from_bitmap() is unused and overwritten by another
definition.Thus the first attribute doesn’t get copied to the FSAL
attribute mask, which can result in security issues related to file
permissions.

headerslog = log_mod_open("headers.log", 0); [Author1]
-------------------------------------------------------
int logfile_mod_open(char *path, size_t bufsz)[Author2]
{ // implicit: bufsz = 0
  bufsz = 1400; [Author2]
  if (bufsz > 0) {...}
}

This definition is unused

(b) A Configuration Bug Underlying Unused Definitions. The
developer of logfile_mod_open does not use value of bufsz but
directly overwrite it with 1400, thus the value 0 assigned to bufsz
is unused. This bug causes unexpected memory consumption and
wrong buffering behaviors.

Figure 1. Two real-world bugs underlying unused definitions de-

tected by ValueCheck with severe consequences like security
issues and configuration bugs. Both bugs cross the author scope.

It is challenging to detect these bugs from unused defini-
tions, although existing tools can detect unused definitions:
(1) Existing techniques only detect which definitions are

unused but do not differentiate non-trivial bugs from sim-
ply redundant code. This is critical because non-trivial bugs
require developers to diagnose more carefully than simply
removing the redundant code. Without differentiation, de-
tecting bugs from a large number of unused definitions will
be impractical. Besides, existing techniques fail to detect un-
used definitions precisely and miss unused definitions that
could be bugs. (2) Existing techniques do not consider the
semantics of unused definitions. Some of the unused defini-
tions could still express special meanings in the programs.
They are written by developers intentionally and thus are
not bug indications. (3) Existing techniques provide no prior-
ity ranking of the detected unused definitions. Since unused
definitions are not directly the root cause of a bug but just
bug indications, developers could spend more effort but de-
tect fewer bugs without a way to distill bugs. As a result,
existing tools report hundreds of unused definitions from a

project with high false positives, which requires overwhelm-
ing effort from developers to check. We observe that a subset
of developers choose to disable unused definition warnings
in compilers. In the top 40 GitHub C++ repositories with
the most stars, nearly half of them do not use these options
in their default compiler configurations1. In search results
of ’gcc unused’ from StackOverflow [9], the largest online
community for developers, the top-voted question looks for
suggestions on how to silence unused definitions warnings.

In this paper, we design an effective and practical approach
to detect, distill, and rank real bugs from a large number of
unused definition candidates. Our approach addresses the
above challenges based on three insights.

First, we make a unique observation that the unused defi-
nitions caused by code written bymultiple developers, which
we call cross-scope unused definitions in this paper, are more
bug-prone. We randomly sample 42 unused definitions bugs
from the history commits of 4 open source projects from
2019-2021 (c.f. § 3.1) and observe that majority of these bugs
involve code written by two developers. The definition is
written by one developer but is ignored/overwritten by an-
other developer. We show two examples of such unused
definitions. In Figure 1a, attr is written by author Author1
but the definition is overwritten by author Author2. In Fig-
ure 1b, the function call is written by author Author1 but the
function is implemented by author Author2, overwriting the
value provided by Author1. The data flow from definitions to
uses in programs embeds the assumptions of developers on
the programs. However, this implicit knowledge sometimes
cannot be fully shared due to the lack of documentation
and communication. Therefore, the unused definition on the
boundary potentially indicates inconsistency between devel-
opers and a higher chance of being bugs. We take advantage
of this observation to distill bug-prone unused definitions.
Second, we summarize several patterns of unused defi-

nitions that are intentionally written by developers in pro-
grams. We observe that not all unused definitions are redun-
dant code in programs, some of which have semantics like
moving a cursor or are intentionally written to keep compat-
ibility. This kind of unused definition is not a true bug. Also,
by mining the use pattern of definitions in similar contexts,
which we call peer definitions in this paper, we can avoid
reporting unused definitions that are not necessarily used.
For example, return values of printf() usually require no
checks and get ignored but do not harm. With these sum-
marized patterns, we prune thousands of irrelevant unused
definitions for detecting bugs, requiring no additional input
from developers.

Third, we make the first attempt to apply code familiarity
models in bug detection to prioritize the unused definitions

1We collect this data on April 9, 2022. We regard compilation configuration
with ‘-Wall’, ‘-Wunused-but-set-variable’, ’-Wunused-value’ but without
’-Wno-unused-*’ options as detecting unused definitions.
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that have a higher chance of being bugs. Since unused def-
initions are not directly linked to bug root causes but just
indications of potential bugs, the false positive rate would
be an internal drawback when applying them to detect bugs.
Therefore, we hope to figure out a way to maximize the
output with low developer efforts. The intuition behind the
ranking algorithm is that unused definitions reflect the incon-
sistency in developers’ coordination. A developer with lower
expertise/familiarity with code may easily ignore the as-
sumption and intercept the original data flow [22]. Research
on code familiarity and expertise are applied to guide defect
prediction and expert recommendation, etc. [26, 49, 63]. Ex-
isting code familiarity models take authorship [49], commit
history [63], and other code editing activities [26] as metrics,
which are obtainable from version control systems [35, 60].
However, few bug detection tools ever take advantage of
these explorations from the software engineering field. We
propose to prioritize code review on unused definitions that
have a higher chance of bugs [18] with code familiarity mod-
els, instead of requiring the developers to check all of them
under time pressure.
We implement a static analysis framework ValueCheck

based on these insights, which detects cross-scope unused
definitions, prunes false positives considering the semantics
and developers’ intention, then applies the code familiarity
model to rank and prioritize detected unused definitions. The
analysis is flow-sensitive, field-sensitive, alias-aware, and
involves inter-procedural authorship analysis. We evaluate
ValueCheck with four systems and libraries: Linux, MySQL,
OpenSSL, and NFS-ganesha. ValueCheck helps detect 210
new bugs, among which 154 are confirmed and fixed by

developers, with a false positive rate of 26%. Compared to
existing tools, ValueCheck demonstrates to practically help
developers in detecting real bugs from unused definitions.

2 Background

2.1 Liveness Analysis

In this paper, we adopt the terminology defined in [12] to
describe our algorithm.
Definition and Use. A definition of variable v in pro-

grams refers to an occurrence of v on the left-hand-side of
an assignment statement2. A use indicates an occurrence of
v on the right-hand-side.

Live Variable.A live variable is a variable that is assigned
a value that is used in the future.

Liveness Analysis. Liveness analysis is a type of def-use
analysis that identify whether a variable is live at certain
points. It is a backward data flow analysis. It computes a
live variable set from successors of this point and checks
whether the variable has a use in this live variable set. If
not, the variable is an unused definition. To formalize it as a

2This is different from C++ concept of ‘definition’ where a definition pro-
vides a unique description of an entity.

dataflow problem, for each statement node 𝑛, 𝑔𝑒𝑛[𝑛] is the
set of variables used in 𝑛. 𝑘𝑖𝑙𝑙 [𝑛] is the variable defined in 𝑛.
𝑖𝑛[𝑛] and 𝑜𝑢𝑡 [𝑛] are the live variable set before and after 𝑛.
It has:

𝑖𝑛[𝑛] = 𝑜𝑢𝑡 [𝑛] − 𝑘𝑖𝑙𝑙 [𝑛] ∪ 𝑔𝑒𝑛[𝑛]

𝑜𝑢𝑡 [𝑛] =
⋃

𝑠∈succ (𝑛)
𝑖𝑛[𝑠]

By computing the 𝑖𝑛[𝑛] and 𝑜𝑢𝑡 [𝑛] iteratively based on the
worklist algorithm, these sets will converge to a fixed point.

2.2 Unused Definitions

Detecting unused definitions has been regarded as compiler
optimization [20, 36, 37, 62] for a long time and is extensively
discussed in topics of dead variables [19, 29, 40, 73] and
liveness analysis [51, 56]. This kind of optimization is even
merged into modern compilers [41, 54]. The technique of
detecting unused definitions is fully developed and merged
into mainstream compilers [1, 7] to eliminate redundant
computation in the generated assembly code and release the
allocated registers. Besides, compilers also provide warning
options at the source code level like ‘-Wunused-value’, ‘-
Wunused-variable’, ‘-Wunused-but-set-parameter’, etc. In
this paper, we do not regard them as useless code that needs
to be removed but as ‘useful symptoms’ that indicate bugs.

3 Design Overview

3.1 Detection Scope

Detecting critical bugs from a large number of unused def-
initions is non-trivial. To achieve this, we make a unique
observation that unused definitions involving multiple devel-
opers are likely to be bugs. Therefore, we define the concept
cross-scope unused definitions to help us pinpoint bugs, which
includes the following scenarios: (1) Ignored/unused return
value, where the developer that implements this function
is different from the developer call this function. (2) Over-
written function argument value, where inside the function
the argument value is overwritten but the function call is
invoked by another developer. (3) Overwritten definitions,
where the code of the old definition is written by one de-
veloper, and the code overwrites the old definition is imple-
mented by other developers on all successor paths of the
overwritten definition. The common characteristic of them is
that the value of the definition is generated by one developer,
but ignored/overwritten by another developer, causing an
unused definition in the code. In all these scenarios, we only
consider local variables in a function. Therefore, we do not
consider concurrent access to shared variables since shared
variables are global variables.

Our design is inspired by a preliminary experiment on
collecting existing bugs related to cross-function definitions:
We implement original liveness analysis and apply it to the
snapshots of MySQL, NFS-ganesha, OpenSSL, and Linux on
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the first commit of 2019 and 2021 separately. We collect un-
used definitions that were present in the 2019 version but
were subsequently removed in the 2021 version. If a bug
fix commit removes this unused definition, we investigate
how this bug relates to the unused definitions. We identified
a total of 325 unused definitions through differential com-
parison. To investigate their impact on bugs, we randomly
selected 60 of these unused definitions by assigning them
serial numbers and generating random numbers between
1-325. We manually checked the commit messages to ensure
that the developers had addressed these unused definitions
as part of the bug fixes, and we found 42 bug-related un-
used definitions. Notably, 39 out of the 42 instances crossed
author scopes, indicating that these defects were located at
the boundaries of developers’ interaction. Building on this
insight, we focused our attention on detecting cross-scope
unused definitions in ValueCheck and explored their effec-
tiveness in detecting bugs.

3.2 Framework Overview

ValueCheck detects cross-scope unused definitions in source
code, prunes the false positives, and then ranks them by
code familiarity to help detect bugs. Its workflow is shown
in Figure 2. The generated ranked unused definitions can
be checked by developers with given ranking as priority.
ValueCheck faces three unique challenges to achieve its
goal:
(1) How to completely and precisely detect cross-

scope unused definitions in all scenarios? (Section 4)

To overcome this challenge, we performed a more precise
analysis to achieve better coverage than the state of art com-
pilers [1, 7]). First, we conduct flow-sensitive liveness anal-
ysis to achieve a higher precision; Second, we propose a
inter-procedural authorship analysis to identify cross-scope
unused definitions which have constraints on the author-
ship of relevant code snippets within and across different
functions; Third, we extend the detection scope to unused
definitions of field variables (a field in a struct or class) by
extending the detection algorithm of local unused defini-
tions to be field-sensitive. Besides, we take advantage of the
existing pointer analysis and def-use analysis framework to
precisely obtain value flow information in the analysis.

(2) How to prune false positives from the large num-

ber of detected unused definitions? (Section 5) The main
issue with existing solutions is the high false positive rate.
This places a heavy burden on developers to manually check
them to detect underlying non-trivial bugs. Therefore, Val-
ueCheck needs effective approaches to prune false positives
that are misreported by the analysis. We propose pruning
approaches which trims false positives that have special
meanings in the program, or are intentionally written by
developers. The pruning requires no additional annotations
from developers.

(3) How to rank up unused definitions that are more

likely to be bugs? (Section 6) To reduce the effort from
developers, ValueCheck adopts code familiarity models to
rank the detected unused definitions. Our intuition is that
for the cross-scope unused definitions, one of the developers
introduces unused definitions into the code because they
are not fully aware of the data flow in the program they
touch. Therefore, for the developers with low familiarity, we
rank the unused definitions introduced by them with high
priority.

4 Detecting Cross-Scope Unused

Definitions

4.1 Detect Local Unused Definitions

Liveness Analysis. Existing detection of unused defi-
nitions in compilers mostly relies on AST walking, which
only reports a definition as unused when the variable is not
referenced at all. However, the order of defines and uses
could decide whether a definition is unused, which is flow-
sensitive. Therefore, we detect unused definitions with a
flow-sensitive liveness analysis in ValueCheck. It conducts
analysis on the control flow graph of the function, starts
from the end of the function, traverses each basic block back-
ward and updates the live variable set based on the memory
operations (load and store) on variables. To deal with loops
in the function, we iterate the liveness analysis for several
times until it reaches the fix point. The live variable set only
records the existence of a use on the variable and cleans all
the uses when traversing a definition. After the live variable
set converges, we check each definitions in this function to
see whether a use of this variable is in the live variable set.
If not, we detect an unused definition. In this way, we can
also check at the entry of a function whether a parameter is
in the use set. If not, this parameter value is not used in this
function, thus also an unused definition.
Indirect Function Call. In cases where the unused defini-
tion is generated by a function call, ValueCheck extracts the
source code location of the called function to enable query-
ing in the authorship lookup phase. When handling function
pointers, ValueCheck checks the points-to set of the pointer
to look up the corresponding functions. The pointee func-
tions are treated as direct function calls in authorship lookup
phase. Since ValueCheck focuses only on local variables, it
does not need to delve into the callees in the analysis phase.
Thus, there is no need for us to handle the recursive calls
differently.
Pointer and Alias. To detect indirect access via point-
ers, we utilize pointer analysis and examine the point-to
graph to determine whether the definition variable is in-
cluded in the pointer-to sets of other variables. If the def-
inition is referenced by pointers, it is considered possibly
used through indirect reference and is therefore not marked
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§4.1: Detect Local Unused Definitions

a : unused definition candidates for bug detection.      is pruned later.b b

SVF

LLVM Bitcode

Liveness Analysis

a=1000

b == 1

a = 20

b = bar(b)

return a

int foo(int a, int b)

{a}

{a,b}

{b}

{a,b}

{a,b}

{b}

a

Value Flow 
Graph

Pointer 
Analysis Graph

int foo(int a, int b)

a foo(1, true) Author B

Author A

b int bar(int x) Author C

b = bar(b) Author A

int foo(int a,int b)
{
    a = 1000;
    if(b == 1)
        a = 20;

b = bar(b);
    return a;
}

Author A

foo(1, true);

int bar(int x) {
    return ret;
}

a

b

§4.2: Authorship Lookup

Author C

Author B

prune b

§6: Familarity Ranking

int foo(int a, int b)

DOK =  �0
        + ��� ∗ FA 
       +  ��� ∗ DL 
  −  ��� ∗ ��(1 +  AC)

Git 
History

FA DL AC

0.64 1.390.37Familiarity: 

§5: False Positive Pruning

Configuration 
Dependency

Unused 
Hints Cursor Peer Definition 

Pruning

b

Figure 2. Overview of ValueCheck. ValueCheck consists of cross-scope unused definition detection, false positive pruning, and
familiarity ranking. It conducts static analysis based on control flow graphs to detect unused definitions. Then with pruning, it rigorously
prunes a large number of false positives. Next, ValueCheck computes the code familiarity of each cross-scope unused definition and ranks
the candidates.

as an unused definition. We conduct field-sensitive Ander-
sen’s analysis [13] because its better scalability compared
to flow-sensitive pointer analysis, while providing a small
difference in help detecting unused definitions according to
previous work [31]. To handle aliases of variables, we check
the value-flow graph generated based on the point-to graph
to see whether this definition is used somewhere else. If it
has other use, this definition is not an unused definition.

v = a+b;     [author V]
if (...) {
  v = c;                      [author C]
} 
else {
  v = d;                      [author D]
} 
v = e + v;     [author E]

v = a + b  [author V]

v = c [author C] v = d [author D]

v = e + v [author E]

Live: {e,c} Def: {v:C} Live: {e,d} Def: {v:D}

Live: {e,v} Def: {v:E}

Live: {e,c,d} Def: {v:[C,D]}

v: C!=V && D!=V     cross-scope unused definition

∪

Live: {e,v} Def: {v:E}

Figure 3. An Example of Define Set. The first definition of v is
overwritten by other developers on all the successor paths.

4.2 Authorship Lookup

To decide whether an unused definition is a cross-scope
unused definition, ValueCheck looks up the authorship
information of the unused definitions it detects based on the
three scenarios we discussed in Section 3.1:
(1) For the unused return value, we get the author of the

call site first, assuming it is author 𝐷 . Then we search the
source code file of the callee and look up the authorship of
the line that returns this value. However, a function may
have multiple locations of returning a value, of which the
authors are 𝐵1, 𝐵2, 𝐵3... In this case, we got all these locations.
If author 𝐵1, 𝐵2, 𝐵3... are all different from 𝐷 , we regard this
as a cross-scope unused definition. If the callee is a library
call not included in this project, we regard the author is
different from 𝐷 .

(2) For the unused function argument, we get the author of
the call site, which we assume is author 𝐶 , then look up the
author 𝐵 that defines the parameters of function 𝐹 . If 𝐶 and
𝐵 are different, it is a cross-scope unused definition. If the
parameter is overwritten inside the function 𝐹 by developer
𝐷 , we compare 𝐷 to author 𝐶 .

(3) To decide whether an unused definition is overwritten
by other developers, ValueCheck needs to record additional
information on whether another definition overwrites it in
the successors of this definition. Therefore, we extend the
original liveness analysis to maintain another set define
aside from the live variable set. It records the last definition
of variables we traverse and the corresponding authors. The
define set follows the same update rule as the live variable
set. We show an example in Figure 3. In this example, Val-
ueCheck reversely traverses blocks in this function. When-
ever there is a definition of variable v, it updates the author
of v in the define set. For every block, it unions the define
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Notation Table

getVar(v) Get variable names of a value
getRetAuthor(F) Get authors of all return statements in function F
checkAuthor(A, List, LiveSet) Check whether A is different from all items from List

before adding the unused definition to LiveSet.
updateDef(v, A, DefSet) Update the author of variable v to A in DefSet
getCallSite(F) Get all call sites of function F
getLine(A) Get the source code line of A
reverse() Traverse the basic blocks or instructions reversely

checkAlias()
Check the point-to graph and the value flow graph
for the variable aliases

function Load::Update(v1 = load v2, LiveSet, DefSet)

1: LiveSet.In.add(getVar(v2))

function Store::Update(I = store v1 v2, LiveSet, DefSet)

1: author1 = getAuthor(getLine(I))
2: if LiveSet.In.find(getVar(v2)) then
3: LiveSet.In.remove(getVar(v2))
4: else
5: checkAuthor(author1, DefSet[v2].author, LiveSet.Unused)
6: if isRetVal(v1) then ⊲ Check unused return value
7: author2 = getRetAuthor(getCall(v1))
8: checkAuthor(author1, author2, LiveSet.Unused)
9: updateDef(getVar(v2), CurrAuthor, DefSet)

function computeCrossDef(F)

1: while Change do Change = False
2: for BB in F.reverse() do ⊲ Traverse basic blocks
3: OrigLiveSet = LiveSet[BB]
4: LiveSet[BB].In =

⋃
𝑠∈𝐵𝐵.𝑔𝑒𝑡𝑆𝑢𝑐𝑐 ( )

LiveSet[s].Out;

5: DefSet[BB] =
⋃

𝑠∈𝐵𝐵.𝑔𝑒𝑡𝑆𝑢𝑐𝑐 ( )
DefSet[s];

6: for I in BB.reverse() do
7: I.Update(I, LiveSet[BB], DefSet[BB]);
8: if OrigLiveSet != LiveSet[BB] then
9: Change = True ⊲ Iterate to handle loops
10: for A in F.args() do ⊲ Check unused definition of parameters
11: EntryBB = F.getEntryBB()
12: if !LiveSet[EntryBB].In.find(A) then
13: for CS in getCallSite(F) do
14: author1 = getAuthor(getLine(A))
15: author2 = getAuthor(getLine(CS))
16: checkAuthor(author1, author2, LiveSet.Unused)
17: if !LiveSet.Unused.empty() then
18: checkAlias(LiveSet.Unused)
19: reportCrossUnused(F, LiveSet.Unused)

Figure 4. Cross-Scope Unused Definition Detection.

set of its successors. When an unused definition is detected,
it checks its author against the authors in the define set
to decide whether this is a cross-scope unused definition.
Therefore, in this example, the first definition of v written
by author V is a cross-scope unused definition.

Name Code/IR Pattern

Configuration

Dependency

/* Variable host is used when the config USE_ICMP is enabled. */
char host[10] = "127.0.0.1"
#if USE_ICMP

n = netdbLookupHost(host);
#endif

Cursor

/* The definition expresses the semantic of moving cursor. */
(buf++) = ‘a’;

Unused

Hints

/* The unused definition is marked by developers with aware.*/
int do_flush_info(const bool force [[maybe_unused]]) {...}

Peer Definition

Pruning

/* The unused definition is intentionally ignored by developers. */
printf("%d\n", num); // An implicit definition [tmp] = printf()

Table 1. Summary of pruning patterns in ValueCheck.

4.2.1 Algorithm Details. Figure 4 shows our unused
definition detection algorithm. To handle field-sensitive anal-
ysis, we check the value inside getVar(). If this value is
loaded from a field of a struct variable 𝑣 with offset 𝑛, we
create a new variable name as the 𝑣_𝑛 to refer to this field. In
this way, we can treat the field definitions similarly to other
definitions. In this unified framework, computeCrossDef()
computes the cross-scope unused definitions for each func-
tion. It traverses each basic block reversely. For each load
instruction, it adds a use to the live variable set. For each
store instruction, it removes all the use of this variable and
if there is none, it detects an unused definition. In this case,
it checks with checkAuthor() to see whether this is a def-
inition overwritten by other developers or a return value
written by other developers by getRetAuthor(). Besides, it
will update DefSet by updateDef(). By iterating repeatedly
on this function, the live variable set and the define set are
guaranteed to converge. The cross-scope unused definitions
in this function are reported.

5 Pruning

Not all cross-scope unused definitions are bugs. We observed
that there are many cases where an unused definition is
intentionally left in programs. Reporting them as bugs can
introduce a high false positive rate. Based on our observation,
we summarize four patterns for pruning as shown in Table 1.

5.1 Configuration Dependency

The use statements of some definitions could be controlled
by preprocessor directives (e.g., #if), which may be disabled
by the compilation configurations. In this case, static analysis
may regard these definitions as unused because their uses
are not compiled into IR. Therefore, ValueCheck looks into
the corresponding source code of each definition and checks
if there is any use of this definition enclosed by #if, #ifdef,
#ifndef and #endif directives in the same function. If so,
we prune this definition.

5.2 Cursor

As shown in Figure 5, after assigning a value to the mem-
ory region that the cursor o points to in Line 259, the code



EuroSys ’24, April 22–25, 2024, Athens, Greece

237  static void dashes_to_underscores(...)
238  { 
239      char *o = output;
254      if (c == '-')
255          *o++ = '_';
259      *o++ = '\0'; 
260  } This unused definition is a cursor.

Figure 5. Example of Cursors.

increments o. This definition serves as program semantics
“moving cursor" intentionally. Therefore, we regard these
unused definitions are not bugs and prune them to reduce
false positives based on the uses of a variable in the value
flow graph. If a variable is incremented repeatedly by the
same constant, ValueCheck considers it as a cursor and
prunes it.

5.3 Unused Hints

In some cases, developers keep a definition unused for
intended reasons. To hint these definitions are unused, the
developers could add an unused attributes to them. We ex-
clude them by matching the keyword ’unused’ in the source
code of these unused definitions.

5.4 Peer Definition Pruning

Sometimes, function calls are guaranteed to be successful
or developers just don’t care whether the call succeeds or
not, resulting in the return value being unused. To quantify
how much the developers ‘care about’ using the definition,
we look at peer definitions of this definition. We define peer
definitions as (1) For the definition of a function 𝑟𝑒𝑡 = 𝐹 ()
return value, peer definitions of 𝑟𝑒𝑡 are return values of other
call sites of 𝐹 . (2) For 𝑛𝑡ℎ parameter of function 𝐹 , its peer
definitions are the 𝑛𝑡ℎ parameter from functions with the
same signatures. If the occurrences are over ten and over
half of the peer definitions are not used, we will not report
it.

6 Ranking based on Code Familiarity

We adopt the code familiarity model to help developers pri-
oritize their effort in checking unused definitions that are
more likely to be bugs. Even with rigorous pruning strate-
gies, there are still unused definitions that require checks by
developers, which could impose a workload on developers.
To deal with this, we propose to integrate the code fa-

miliarity model into ValueCheck, which helps to rank the
unused definitions that are more likely to be bugs. Our in-
tuition is that if the developer is not familiar with a cer-
tain snippet of code, he/she is more likely to cause some
inconsistent behaviors in code. To measure the developers’
code familiarity, the software engineering area has explored
the code familiarity models for years. These models extract

the familiarity metrics from the code contribution history
to measure the developers’ expertise. ValueCheck selects
one representative work from the code familiarity area, the
degree-of-knowledge (DOK) model [26], to measure code
familiarity. The DOK model used in ValueCheck is:

DOK = 𝛼0 + 𝛼𝐹𝐴 ∗ FA + 𝛼𝐷𝐿 ∗ DL − 𝛼𝐴𝐶 ∗ 𝑙𝑛(1 + AC)

With this model, we select the author of each code line and
compute this author’s familiarity with the current file. FA,
DL, and AC respectively represent first authorship, the num-
ber of deliveries from a developer, and deliveries to this file
that are not authored by this developer. We count the com-
mit numbers instead of committed lines because it is less
resource-intensive and time-consuming. Based on prior lit-
erature [50], there is a strong correlation between commit
numbers and commit line numbers. To obtain the weight
in this model, we follow the steps of the original paper [26]
to sample 40 source code lines from each application and
ask the developers to self-rate their code familiarity (from
1-5) on these lines. Then we fit the linear model and get the
weights, which are 𝛼0 = 3.1, 𝛼𝐹𝐴 = 1.2, 𝛼𝐷𝐿 = 0.2, 𝛼𝐴𝐶 = 0.5.
We apply this linear model in ValueCheck to compute the
code familiarity.

The DOK model is chosen for two reasons. First, the DOK
model is the most recent and representative model of code
familiarity. It considers common factors that are mostly ac-
cessible in real-world software development. Second, the
DOK model has generality to different applications. The
three factors in DOK model, which are first authorship (FA),
deliveries from a developer (DL), and deliveries to a code
element that are not authored by this developer (AC), are
language-independent and obtainable frommost open source
projects.

7 Implementation

Based on the design and techniques presented in Section 3,
Section 4, Section 5 and Section 6, we implement the frame-
work ValueCheck with LLVM-13.0.0 [6], SVF-2.6 [69] and
python. It consists of four components:
Code analysis. The clang compiler compiles the source code
into LLVM [41] bitcode. Then ValueCheck obtains point-
to graph and sparse value flow graph based on SVF [69].
Since SVF takes a long time to analyze a whole large scale
program, we apply ValueCheck on separate bitcode files
generated by each single program file and only call SVF APIs
to generates value flow graphs and the point-to graphs when
we identify unused definitions within this bitcode file and
want to further check aliases and indirect calls. It conducts
analysis based on control flow graphs of each function, and
accesses the def-use information of variables based on the
sparse value flow graph and the point-to graph.
Authorship Lookup. This part is implemented in Python.
It reads the meta information such as file names, function
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names, and line numbers of each unused definition. Then
it reads the git meta files to look up authorship of unused
definitions based on GitPython [2]. Then it compares the
authorship and outputs cross-scope unused definitions.

False Positive Pruning. This component consists of two
parts in LLVM and Python respectively. It checks the corre-
sponding source code for each definition to see whether
it should be pruned based on the pruning strategies. To
match the unused hints and configuration dependency, we
use re [8] library to do regex matching on code. For cursor
and peer definition pruning, we collect all uses of variables
and functions by LLVM API getNumUses().

Familiarity Ranking. After pruning, ValueCheck com-
putes FA, DL, and AC values for each unused definition
by traversing the file commit log in git repositories with
GitPython [2]. Lastly, ValueCheck outputs the unused def-
inition report ranked by code familiarity.

8 Evaluation

In the evaluation, we answer the following questions:

1. How effective is ValueCheck in applying cross-scope
unused definitions to help detect bugs?

2. What is the accuracy of detecting bugs inValueCheck?
3. How does ValueCheck compare with existing tools?
4. What is the contribution of each component in Val-

ueCheck?
5. How scalable is ValueCheck on a large code base?

8.1 Experiment Setup

8.1.1 Evaluated Applications. We mainly evaluate Val-
ueCheck with four widely-used open-source system soft-
ware and libraries, Linux-5.19, MySQL-8.0.21, OpenSSL-3.0.0,
NFS-ganesha-4.46. These applications are selected with three
criteria. First, they are popular real-world system projects
of various types, which reflect how generally ValueCheck
can be applied to real-world applications. Second, the source
code of these applications is well-maintained and tested. The
detected bugs are not from an immature program. Third,
these applications have abundant version histories.

8.1.2 Evaluation Environment. All the experiments are
conducted on a machine with 3GHz 6-core Intel i5-9500 CPU,
9216 KB cache, 16GB memory, and a 480GB SSD, which
runs Ubuntu 18.04 with kernel 4.15.0. All applications are
compiled with -O0 and -fno-inline by clang-12 to retain
source-level information. We compile each source object into
separate bitcode files then perform analysis on these indi-
vidual bitcodes. This helps reduce overhead of SVF from the
inter-procedural analyses but does not affect the detection
results since our detection target is local unused definitions.

Application #Detected Bugs #Confirmed Bugs

Linux 63 44
NFS-ganesha 22 18

MySQL 99 74
OpenSSL 26 18

Total 210 154

Table 2. The number of bugs newly detected byValueCheck.

Among the 210 bugs detected, 154 bugs are confirmed by developers.

Bug Type App. Bug Description

Missing

Check (134)

NFS-g Unhandled ACL error
MySQL Missing sanity check
MySQL Unhandled error code
OpenSSL Malloc a negative size
Linux Fail to check device status

Semantic

Bugs (20)

NFS-g Ignore first bitmap attribute
OpenSSL Use the wrong master secret in TLS

Table 3. Bug examples detected by ValueCheck. Generally,
ValueCheck detects two categories of bugs: missing check bugs
and semantic bugs. Of 154 bugs confirmed, 134 are missing check
bugs, 20 are semantic bugs.

dberr_t Arch_Page_Sys::recover() {
    err = arch_recv.init();
    ... // No reference to err
    err = arch_recv.fill_info(this);
    if (err != DB_SUCCESS) {
        return (DB_OUT_OF_MEMORY);
    }
} 

err is unused

(a) A Missing Check Bug Detected by ValueCheck. The error code
returned from init() function is unchecked, which could result in the
crash of page archiver recovery. It is a latent error that will corrupt data
and cause failure in future execution, which is missed by the test suite.

void update_sctx() {
    const char *to_host;  ...
    if (!to_host) to_host = "";       [author1]
    sctx->assign_host(to_user_ptr->host.str, 
to_user_ptr->host.length);            [author2]
    ...  
} Need use ‘to_host’ here

(b) A Semantic Bug Detected by ValueCheck. to_host is assigned
a value but not used. It should have been used as the first parameter of
assign_host(). Otherwise, the incorrect host address could corrupt the
security context sctx.

Figure 6. Examples of New Bugs Detected by ValueCheck.

8.2 Detect New Bugs

8.2.1 Overall Results. ValueCheck detects 210 new bugs
from cross-scope unused definitions in applications, among
which 154 are confirmed by developers.We applyValueCheck
to the recent versions of the evaluated applications listed in
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Section 8.1.1. We report bugs detected by ValueCheck to
developers and the result is shown in Table 2.

8.2.2 Ethics andResponsibleDisclosure. We take ethics
in the highest standard regarding the new bugs we detect.
We report all the bugs we detect to the developers though
their official bug mailing list, clarify the potential impact of
the bugs and help with the patches. We do not reveal the
details of the bugs to any unofficial channels unless they are
already fixed. In this paper, we anonymize all developers’
names and identifiers and hide irrelevant details of the bug
code that could be used to trace the authors.

8.2.3 Bug Case Study. Table 3 shows several bugs we de-
tected with ValueCheck. These bugs vary in terms of types
and root causes. We categorize them into two types: 1) Miss-
ing check bugs — bugs that fail to check on function return
values, parameters, or other variables, as the example shown
in Figure 6a. This will make the following execution take the
wrong assumption on completeness of certain operations
and even cause corrupted data to be used by the program
silently; 2) Semantic bugs — bugs that break specific program
semantics. This will cause no runtime crash but the logic
of the programs is wrong, as shown in Figure 6b. Some of
them are hard to detect with existing solutions. For example,
for the bug in Figure 6a, ValueCheck detects latent errors
which could cause invisible symptoms and affect further exe-
cution but do not crash the programs immediately, which is
hard for developers to detect pre-release by testing. The error
in initializing the recovery mechanism of the page archiver
could cause failure in future execution, which demonstrates
the effectiveness of ValueCheck in detecting real-world
non-trivial bugs.

8.2.4 Bug Categorization. To investigate when the 154
new bugs detected by ValueCheck arise and how they affect
the applications, we classify them based on their distribution
across software components, security severity, and the num-
ber of days it took to detect them. The results are illustrated
in Figure 7.

(1) Distribution. 38% of the cross-scope unused defini-
tion bugs we detected are related to file system, and 17% of
the bugs are located in security modules such as authentica-
tion modules (Figure 7a).

(2) Security Severity. We categorize the severity levels
assigned by developers to the bug reports. In cases that the
severity level is not provided, we refer to the corresponding
CWE. As shown in Figure 7b, 15% of bugs are of high severity
and 59% are of medium severity, indicating that the bugs
detected by ValueCheck can point to severe security issues
like broken access control, data leak, etc.
(3) Days before Detected. From Figure 7c, more than

80% of the bugs had persisted in the code base for over 1000
days before we reported them and get confirmed, indicating a
significant challenge in diagnosing and detecting these bugs.

This suggests that ValueCheck is effective in detecting long-
standing bugs that have gone undetected in the code base.
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Figure 7. Bug Categorized by Component Distribution, Secu-

rity Severity and Days before Detected. All evaluated software
undergo thorough testing. Despite this, ValueCheck uncovers
high-severity bugs in critical components that have previously
gone undetected for a long time.

8.3 Accuracy of ValueCheck

8.3.1 False Positives. ValueCheck has a low false pos-
itive rate (18%-30%) for detecting bugs if we only consider
the bugs already confirmed by developers. These false posi-
tives come from three sources: (1) 51 false positives are still
admitted by developers as minor defects in programs but
not serious bugs. Sometimes the developers do not mark a
definition as unused even though they know clearly it is no
longer used. When we report them, some developers add the
unused markers to avoid confusing other developers and the
markers will help improve code readability. However, some
developers just ignore them. For example, some return error
codes are unused because the developers know the function
call will not fail in this context. (2) 5 false positives are from
debugging code and deprecated code but are not included in
the release version. We detect them and report them as bugs
since we compile all applications in debug mode and conduct
the analysis on all functions. However, the developers do not
put a high priority on these unused definitions.

8.3.2 False Negatives. We apply ValueCheck to detect
the 39 existing bugs we collect in the preliminary experi-
ments. ValueCheck successfully detects 37 existing bugs
from them, namely 92.3% recall. 2 bugs are missed from the
detection due to the peer definition pruning, which prunes
the bugs when most of their peer definitions are unchecked.
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App. #Original

#Pruned (%Prune Rate) #Detected

After Pruned

% Prune False Negative

(sampled)Config Dependency Cursor Unused Hints Peer Definition Total

Linux 259 1 (0.39%) 22 (8.49%) 46 (17.76%) 127(49.03%) 196 (75.68%) 63 2%
NFS-g 898 7 (0.78%) 7 (0.78%) 839 (93.43%) 23 (2.56%) 876 (97.55%) 22 1%
MySQL 7743 37 (0.48%) 83 (1.07%) 3031 (39.15%) 4493 (58.03%) 7644 (98.72%) 99 3%
OpenSSL 642 18 (2.82%) 74 (11.60%) 322 (50.47%) 202 (31.66%) 616 (96.55%) 26 1%

Table 4. Prune rate breakdown and sampled false negative rate in ValueCheck. The false negative rate of pruning is less than 10%
based on sampling with 95% confidence.

8.3.3 Prune Rate. To help understand the effectiveness
of our pruning strategies, we present the breakdown of each
pruning strategy in Table 4. Overall, ValueCheck’s pruning
strategies largely reduce the number of candidates for detect-
ing bugs. For all the evaluated software, ValueCheck prunes
between 75.68% to 98.72% of the cases, significantly reducing
the burden of developers in reviewing all the potential bugs.
Specifically, the unused hints and peer definition pruning
strategies are found to be the most effective in reducing the
number of candidates. For example, in MySQL, pruning elim-
inates over 7000 cases, with 98% due to these two pruning
strategies. It’s worth noting that the prune numbers are ob-
tained from the pipeline of pruning as we showed in Figure 2,
which means some false positives may match multiple pat-
terns in our pruning but are pruned by the pruning strategies
in the earlier stage. With powerful and aggressive pruning
strategies, ValueCheck ensures that most of the detected
cases are truly unused.

8.3.4 False Negatives of Pruning. To further evaluate
the precision of the pruning strategy, we sample 100 cases
from the unused definitions that get pruned from each appli-
cation and compute the sampled false negatives, as shown
in Table 4. We sampled pruned cases by assigning serial
numbers to the cases in the order they were detected by Val-
ueCheck. We generated random numbers within the serial
number range and selected the pruned cases corresponding
to these numbers. For each application, the false negative
rate of pruning is less than 10%, which is statistically sig-
nificant with 95% confidence. This suggests that the vast
majority of cases that were pruned are indeed false positives.
Among 7 false negative cases, 2 are due to the configuration
dependency pruning, for which developers mark the vari-
ables with (void) to silent the unused warnings. However,
this is not good practice of dealing with unused definitions.
5 are due to peer definitions pruning. Despite the potential
false negatives, we still regard these pruning strategies as
necessary because they effectively reduce the false positive
rate to an acceptable level. According to experience from
[17], developers tolerates false negatives better than false
positives.

8.4 Comparison with Existing Tools

In this section, we compare ValueCheck to Clang, fb-infer,
Smatch and Coverity on detecting bugs from unused defini-
tions, as shown in Table 5.

8.4.1 ComparisonwithClang. We compareValueCheck
to the compiler Clang. Maintainers of the evaluated appli-
cations periodically clean up code based on Clang warn-
ings as indicated in their commit history. Therefore, no un-
used definitions are reported when we compile with the
option ‘-Wunused’. Many unused definitions detected by
ValueCheck but not by Clang is because Clang does not
perform a precise analysis to detect unused definitions but
just depends on recursive AST walking. It follows gcc as the
specification and only detects a variable as unused when it
never gets referred to on the right-hand side. Therefore, no
bugs newly detected by ValueCheck are detected by Clang.

8.4.2 Comparison with fb-infer. FB-infer is a static anal-
ysis tool from Facebook. It can detect unused definitions
that are referred to as “Dead Store” in its report, which
we refer as ‘Infer-unused’. Table 5 shows fb-infer detects
fewer bugs than ValueCheck because they are incomplete
in detecting all types of unused definitions in programs like
overwritten/ignored arguments and field unused definitions.
Also, fb-infer has a much higher false positive rate than
ValueCheck. The false positives come from the following
reasons: (1) fb-infer reports many unused definitions that are
not cross-scope. When developers call the function written
by themselves, they usually have the sense of when to use
the parameter and the return value and when not. Therefore,
they typically do not confirm unused definitions that are not
cross-scope as bugs. (2) Cursor assignments, which are not
excluded from fb-infer results. In our sampling, all the true
bugs detected by fb-infer are also detected by ValueCheck.
ValueCheck detects more bugs from unused definitions with
a lower false positive rate compared to fb-infer.

8.4.3 Comparison with Smatch. Smatch [4] is a static
analysis tool for Linux based on AST. It reports warnings
when bug patterns are matched. It helps kernel developers
detect thousands of bugs in kernel [3].

Smatch detects fewer bugs with a higher false positive rate
from unused definitions compared to ValueCheck. Smatch
detects one type of unused definitions: the return value of a
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function is unused. We refer the unused definition bugs de-
tected by Smatch as Smatch-unused. We run Smatch on the
evaluated software. However, Smatch-unused reports compi-
lation error on all applications except Linux. Therefore, we
only compare the result of Linux: Smatch-unused detects 28
real bugs compared to 154 real bugs detected byValueCheck,
with a false positive rate of 81%. The bug number is lower
and the false positive rate is higher than ValueCheck due to
two reasons: (1) It only detects unused return values among
unused definitions. Besides, due to inlining, some unused
return values are inlined as unused assignments, thus are not
detected by Smatch-unused. (2) It conducts analysis based
on the AST parser instead of control flow analysis, so the
analysis is not precise and has high false positives.

8.4.4 Comparison with Coverity Scan. Coverity is a
static analysis tool that can detect defects in C/C++ projects,
which is a commercial tool. We apply for its basic version
Coverity Scan and evaluate it on the four projects. Coverity
Scan two types of unused definition bugs: unused value and
unchecked return value (unused return value is a subset). We
call the bugs detected by Coverity Scan from unused defini-
tions as Coverity-unused. Coverity-unused detects 170 bugs
with a total false positive rate 62% from four applications. For
Linux, though Coverity-unused detects more bugs, itmisses

35 bugs detected by ValueCheck. For the other applications,
their commit history shows developers of some evaluated
applications previously utilized Coverity and addressed its
warnings, which explains why Coverity detects much less
bugs. ValueCheck can detect new bugs with lower false pos-
itive rate because: (1) Coverity-unused only detects unused
assignment and unused return value, excluding other types
of unused definitions (e.g. assigned but unused arguments).
Besides, to avoid the huge number of unpruned results, it
infers whether function return values need be used based
on the percentage of used return values. If the function is
only used once, it cannot correctly infer whether the return
value should be used. Compared to Coverity-unused, Val-
ueCheck additionally considers authorship when deciding
whether an unused definition should have been used, which
is not limited by the number of function invocations. (2)
Coverity-unused pruning does not consider any authorship
information and code semantics, so it does not prune unused
definitions that are intentionally left in the code, resulting
in higher total false positives.

8.4.5 Case Study: a bug detected by ValueCheck but

missed by other tools . Figure 8 shows a bug example that
fb-infer, Smatch-unused and Coverity-unused fail to detect.
Since the variable ret is referred in if(ret), all definitions
of ret are regarded as used by fb-infer and Smatch-unused
due to their inaccurate analysis. Besides, Coverity-unused
does not report it as a bug because it fails to infer that the
return value of get_permset should be checked since it is

Tool

#Found Bugs/#Real Bugs/%Bug False Positive

Linux NFS-g MySQL OpenSSL Total

Clang 0 0 0 0 0

Infer −∗ 8/2/75% 45/9/80% 13/3/77% 66/14/79%

-unused

Smatch 147/28/81% −∗ −∗ −∗
147/28/81%

-unused

Coverity 157/56/64% 3/3/0% 4/1/75% 6/4/33% 170/64/62%

-unused

ValueCheck 63/44/30% 22/18/18% 99/74/25% 26/18/31% 210/154/26%

Table 5. Unused Definition Bugs Detected by Clang, Infer,

Smatch, Coverity and ValueCheck. ValueCheck in total de-
tects more bugs with lower false positives than other tools. *Report
errors during analysis.

only invoked once. However, this actually is a real bug ac-
knowledged by developers with security concerns of broken
access control when invalid permission set is read. In fact, the
definition in line 237 was previously used. But after author2
committed line 239, it became an unused definition. When an
unused definition spans multiple authors, it indicates such
bugs, which can be identified using authorship information.

It is worth noting that ValueCheck is not a replacement
of other tools but a complement. It focuses on precisely de-
tecting bugs from cross-scope unused definitions. However,
it does not detect unused definition bugs introduced by the
same developers due to carelessness or other reasons. Exist-
ing tools report this type of bugs but with high false positives,
which remains as an open problem to explore in the future.

235 acl_t fsal_acl_posix(...) 
236 {
237   ret = get_permset(en, &pset);[Author 1]
238   ...
239   ret = calc_mask(&allow_acl); [Author 2]
240   if(ret)    [Author 1]
...}

Unused Definition

Figure 8. A bug detected by ValueCheck but not detected by

fb-infer, Smatch-unused and Coverity-unused. The developer
forgot to handle the return error status from get_permset, which
would cause access control error if the acl entry is invalid. Fb-infer
and Smatch-unused fail to detect it due to inaccurate analysis where
the variable ret is regarded as used, and Coverity-unused fails to
infer the return value of get_permset need to be checked because
it is only called once.

8.5 Authorship and Code Familiarity Effectiveness

8.5.1 Effectiveness of the Cross-Scope Authorship. To
explore how cross-scope authorship can help distill unused
definitions that are real bugs from programs, we remove
cross-scope filtering from ValueCheck and preserve all
other components (w/o Authorship group). Then we report
the top 20 bugs detected by the modified tool. The result is
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App.

#Detected Bugs from Top 20 Bugs

ValueCheck w/o Authorship w/o Familiarity w/o AC w/o DL w/o FA

Linux 20 14 16 20 19 20
NFS-g 17 2 16 17 16 17
MySQL 20 10 15 19 18 19
OpenSSL 17 2 15 17 16 17

Total 74 28 (-62%) 58 (-16%) 73 (-1%) 69 (-7%) 71 (-4%)

Table 6. Effect of authorship and the DOK model in Val-

ueCheck. ValueCheck detects a higher total number of bugs
compared to other groups.

presented in the second column of Table 6. Compared to orig-
inal ValueCheck, the detected real bugs are much fewer, in
total 28 bugs. This is because without cross-scope authorship
filtering, the number of detected unused definition is much
higher (2259 in total), for which pruning and ranking are
insufficient to reduce false positives to an acceptable level.

8.5.2 Effectiveness of the DOK Model. To explore how
effective the DOK model prioritizes bugs from detected un-
used definitions, we set up four groups: 1) (w/o Familar-
ity) Remove the ranking from ValueCheck. Select the first
20 cross-scope unused definitions detected by ValueCheck
from each application. 2) (w/o AC, w/o DL, w/o FA) Individ-
ually removing each factor from the code familiarity model
and applying ValueCheck to get 20 cross-scope unused def-
initions with the lowest code familiarity. Table 6 shows the
number of bugs detected by the four groups. In total, Val-
ueCheck detects 74 existing bugs, 16% more than detecting
without the familiarity model. Removing AC and DL factor
decreases the total number of detected bugs and the precision
of bug detection in the evaluated applications.

8.5.3 Bug Detection Precision of Different Cutoffs.

We evaluate the precision of bugs detected by ValueCheck
with different cutoffs on report numbers in Figure 9. When
ValueCheck only reports the top 10 unused definitions with
the lowest code familiarity from each applications, the pre-
cision of confirmed bug is the highest at 97.5%. With the
increasing of the reported bug number, the precision of bug
detection decreases, which indicates the relevance of code
familiarity and the possibility of detecting bugs. From the
result, it shows that the code familiarity model is effective
in prioritizing real bugs.

8.6 Scalability of ValueCheck

As shown in Table 7, for each application, the execution
time of ValueCheck on the whole application code base is
under 30 min even for Linux with 27.8M LOC (we turn on
allmodconfig compilation flag). Further, when integrating
ValueCheck into the code testing and analysis process, this
overhead could be reduced by running the analysis incre-
mentally, i.e., only on the changed functions and the affected
files in a commit. We do the incremental analysis on the
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Figure 9. Precision of bug detection with different cutoffs

after familarity ranking. ValueCheck has a precision of 97.5%
when reporting the top 10 detected unused definitions with the
lowest familiarity from each applications.

first 20 commits after 2022 on each application. The aver-
age execution time on each commit is under 5s for all the
applications we evaluate. It empirically demonstrates that
ValueCheck can be integrated into the code development
with an acceptable time cost for a large-scale code base.

Application #LOC Time Incremental Time

Linux 27.8M 28m12s 4.6s
NFS-ganesha 315K 2m13s 2.2s

MySQL 1.7M 16m32s 2.6s
OpenSSL 1.5M 3m54s 1.9s

Total 31.3M 50m51s 11.3s

Table 7. Scalability of ValueCheck.

9 Limitations and Discussion

9.1 Limitation

ValueCheck demonstrates to have better accuracy in de-
tecting bugs from unused definitions compared to the state-
of-the-art. However, ValueCheck still has limitations on
having false positives. For example, some unused definitions
are just legacy code or debugging, which could be further
pruned by analyze the commit history and comments. But
this will incur much more overhead so we do not prune this
type of false positive. Besides, our exploration of cross-scope
unused definitions is not an assertion that unused defini-
tions which do not cross author scopes are not bugs. The
assumption we make in the design of ValueCheck is based
on our preliminary experiments (Section 3.1). Whether there
are other types of unused definitions that are prone to be
bugs is another problem to be explored in the future.

9.2 Alternatives of the DOK model

We use the DOK model because it is one of the state-of-the-
art model and considers accessible factors from public code
repositories. However, some alternative models could be con-
sidered, which may be less accurate but do not require the
original developers to participate. The EA model [49] models
the type of commits made by a developer, such as bug fixes,
refactoring, and new functionality and assigns familiarity
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score to them differently. [52] can automatically infer devel-
oper expertise through their time to fix detects in commit
histories. Another model [14] considers activities like com-
ment and review which may also increase familiarity with
the code. It is possible to replace with alternative familiarity
models in ValueCheck.

10 Related Work

Bug Detection. A range of research has been proposed to
detect bugs and vulnerabilities [65, 79]with formalmethod [21,
42, 67], static analysis [15, 33, 43, 44, 75, 80, 81] and auto-
matic testing [39, 59, 66]. Some work directly infer rules from
source code and picks up deviant outliers, which could be
potential bugs [23, 34, 45, 47, 70, 76, 78]. Compared to them,
our work detects a potential bug pattern, cross-scope unused
definitions, which previously is regarded as redundant code,
and demonstrates that it is possible to detect bugs from the
unused definitions with low effort.
Code Familiarity. Previous work measure how familiar
a developer is with a code snippet in a project by metrics
include change history [32, 46, 49], file dependency [48],
authorship [49], and interaction information [71]. [26] pro-
poses the Degree-of-Knowledge (DOK) model to achieve a
better measurement. In [74], the authors reveal the relation-
ship between bug fixes and developer familiarity. Our work
borrows the existing literature in this field to help reduce
developers’ efforts under time pressure. Some work rank the
reports from static analysis tools with other methods like
AdaBoost [58], which is orthogonal to our ranking method.
Inconsistent Code. Researchers studied the inconsis-
tency in code in some past literature [16, 61, 72]. They focus
on detecting unreachable code and removing them to reduce
static analysis and coverage analysis effort, but not for bug
detection while our work focuses on bug detection. Some
previous work illustrates that certain code structures can in-
dicate deeper problems in software design [24, 25, 28, 64], etc.
Code smells are also related to the code quality and defect
rate [30, 38, 55, 68, 77] of programs, which inspire our work
to detect bugs from bad code patterns (unused definitions).
Dead Code Elimination As we already discussed in Sec-
tion 2, eliminating unused definitions of registers has been
regarded as a low-level code optimization [19, 20, 29, 36, 37,
40, 53, 57, 62, 73]. Unlike these previous works that simply re-
move all the redundant code, we propose to treat cross-scope
unused definitions as potential bugs.

11 Conclusions

In this paper, we propose a practical method to detect cross-
scope unused definitions, prune false bugs, and prioritize
potential bugs in programs. We implement ValueCheck and
evaluate it on open-source system software. By rigorously
pruning as well as combining with code familiarity mod-
els, ValueCheck boosts the effectiveness of detecting bugs

from unused definitions. ValueCheck detects 210 real-world
new bugs, and 154 bugs confirmed by the developers. Val-
ueCheck demonstrates how to take advantage of unused
definitions to detect bugs with low effort. The artifact is
available in [10].
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Appendix A ARTIFACT APPENDIX

A.1 Abstract

In the paper we propose to use cross-author unused defini-
tions to detect bugs and prioritize bugs by its familarity.

Its workflow contains following steps:
• Using the compiled bitcode as input, ValueCheck ap-
plies liveness analysis to identify unused definitions
and prune false positives.

• From the application code, ValueCheck extracts au-
thorship information and capture cross-authorship re-
lationship.

• By calculating the code familiarity, ValueCheck priori-
tizes the detected unused definitions.

We provide the source code, scripts, and other artifacts
for the framework we presented in the paper. The artifact is
available on GitHub at github.com/floridsleeves/ValueCheck.
You can set up and use git lfs clone to download the
repo to your local machine. In some new version of gits, git
clone has been updated in upstream Git to have comparable
speeds to git lfs clone.

A.2 Dependencies

• Linux (evaluated on Ubuntu 20.04)
• Python >=3.8
• SVF >= 2.7
• LLVM >= 12.0

A.3 Datasets

The artifact evaluates four open-source web applications.
The scripts will automatically download their source code
from GitHub and checkout the corresponding versions. The
artifact includes the pre-compiled bitcode from each appli-
cation by wllvm with flag -fno-inline -O0 and -g. The
bitcodes are broken into different separated modules to re-
duce the inter-procedural value analysis time of SVF.

A.4 Setup

We provide a script install.sh in the artifact to automat-
ically install the dependencies and build the software. The
details of setup is as follows:

• Install cmake, gcc, g++, libtinfo5, libz-dev, zip,
wget.

• Setup SVF by script setup.sh. It will download llvm
and build SVF. The SVF in the artifact is a modified
version, in which we modify CMakeLists.txt to gen-
erate shared libraries.

• Install Python libraries cxxfilt, gitpython, numpy,
matplotlib.

• Download git repositories of the evaluated applica-
tions and checkout to the corresponding versions.

• Compile ValueCheck. The generated libraries are un-
der build directory.

A.5 Evaluation workflow

We provide a script run.sh to automatically perform the
evaluation. It runs the framework on the four evaluated ap-
plications and generate bug reports with familarity ranking
in the directory result. We also provide scripts to automate
the evaluation and generate the Tables and numbers in Sec-
tion 4. All the output will be in the result folder and contain
the following key results:

• result/table_2_detected_bugs.csv: Total number of
detected bugs from each application. (Table 2)

• result/table_6_dok_effect.csv: The number of de-
tected bugs within top 20 bugs under different DOK
settings. (Table 6)

• result/figure_7_dist.pdf: The category of bugs based
on distribution, security, and days before detected. (Fig-
ure 7)

• result/figure_9_detected_bug_dok.pdf: The figure
of reported bugs when increasing DOK rank. (Figure
9)

• result/table_7_time_analysis.csv: Time (seconds)
to run the analysis. (First column of Table 7)

• In the result/APP_NAME/ directory, detected.csv
contains all the detected bugs.

Note that due to the differences in hardware environments,
the performance results in Table 7 can be different from the
numbers reported in the paper.
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